目次
はじめに
この記事で取り上げる本
著:リサ・ランドール, 写真:ムコウヤマ シンジ, 写真:シオバラ ミチオ, 翻訳:向山 信治, 翻訳:塩原 通緒
¥2,074 (2021/08/06 06:11時点 | Amazon調べ)
ポチップ
この本をガイドにしながら記事を書いていきます
この記事の3つの要点
- 一般相対性理論と量子力学は相容れない
- ひも理論は、一般相対性理論・量子力学を融合させる可能性がある
- ひも理論から導かれる「ワープする余剰次元」は、「重力の階層性問題」を解決しうる
一般相対性理論や量子力学など、現代科学の最前線の大本について深く理解できる一冊でもあります
自己紹介記事
あわせて読みたい
ルシルナの入り口的記事をまとめました(プロフィールやオススメの記事)
当ブログ「ルシルナ」では、本と映画の感想を書いています。そしてこの記事では、「管理者・犀川後藤のプロフィール」や「オススメの本・映画のまとめ記事」、あるいは「オススメ記事の紹介」などについてまとめました。ブログ内を周遊する参考にして下さい。
あわせて読みたい
【全作品読了・視聴済】私が「読んできた本」「観てきた映画」を色んな切り口で分類しました
この記事では、「今まで私が『読んできた本』『観てきた映画』を様々に分類した記事」を一覧にしてまとめました。私が面白いと感じた作品だけをリストアップしていますので、是非本・映画選びの参考にして下さい。
どんな人間がこの記事を書いているのかは、上の自己紹介記事をご覧ください
あわせて読みたい
Kindle本出版しました!『天才・アインシュタインの生涯・功績をベースに、簡単過ぎない面白科学雑学を…
Kindleで本を出版しました。タイトルは、『天才・アインシュタインの生涯・功績をベースに、簡単過ぎない面白科学雑学を分かりやすく書いた本:相対性理論も宇宙論も量子論も』です。科学や科学者に関する、文系の人でも読んでもらえる作品に仕上げました。そんな自著について紹介をしています。
リサ・ランドール『ワープする宇宙』から、「ワープする余剰次元」を理解する
本書『ワープする宇宙』の構成について
あわせて読みたい
【圧巻】150年前に気球で科学と天気予報の歴史を変えた挑戦者を描く映画『イントゥ・ザ・スカイ』
「天気予報」が「占い」と同等に扱われていた1860年代に、気球を使って気象の歴史を切り開いた者たちがいた。映画『イントゥ・ザ・スカイ』は、酸素ボンベ無しで高度1万1000m以上まで辿り着いた科学者と気球操縦士の物語であり、「常識を乗り越える冒険」の素晴らしさを教えてくれる
まずは、本書がどのような構成になっているのかから触れていこう。
本書は、科学者であるリサ・ランドールが1999年に提唱した「ワープする余剰次元」という仮説について、自ら説明する本だ。仮説そのものが書かれているのは、全6章のうち1章のみ。第1章から第4章で事前知識の説明をし、第5章が本題、そして第6章がまとめの章という形になっている。
そして本書は、もちろん本題の第5章も面白いのだが、第1章から第4章も見事なのである。
事前知識として、一般相対性理論・量子力学・ひも理論など、物理学における非常に大きな発見とその流れについて概説される。ある程度これらの知識がなければ「ワープする余剰次元」を理解できないのだが、本書を頭から読めば、本題である第5章を”一応”理解できるようにはなっている。
あわせて読みたい
【奇妙】大栗博司『重力とはなにか』は、相対性理論や量子力学の説明も秀逸だが、超弦理論の話が一番面白い
『重力とはなにか』(大栗博司)は、科学に馴染みの薄い人でもチャレンジできる易しい入門書だ。相対性理論や量子力学、あるいは超弦理論など、非常に難解な分野を基本的なところから平易に説明してくれるので、「科学に興味はあるけど難しいのはちょっと……」という方にこそ読んでほしい1冊
”一応”と書いたのは、事前知識として語られる部分が、非常に「難しい」からだ。
しかしこの「難しさ」は、リサ・ランドールに責任はない。リサ・ランドールの説明が下手だから難しく感じられる、ということではないのである。むしろ、リサ・ランドールはこれほどわかり易く説明できるのか、と感じるぐらいだ。
一般向けの科学書では、「最新の科学理論は難しいから、喩えや簡略化などによって、簡易的に説明する」という方法を取らざるを得ない。ちゃんと理解しようと思ったら、やっぱりかなり難しいのだ。しかしリサ・ランドールは、可能な限り「簡易的な説明」を避け、難しい概念を難しいものとしてどう伝えるかに苦心していると感じられる。
そういう意味で本書は、「リサ・ランドールの仮説を知る」だけではなく、「一般相対性理論・量子力学・ひも理論などについて本格的に学ぶ入り口」としても非常に有効な一冊だと思っている。
あわせて読みたい
【謎】恐竜を絶滅させた隕石はどこから来た?暗黒物質が絡む、リサ・ランドールの驚愕の仮説:『ダーク…
「生物の絶滅」には、以前から知られていたある謎があった。そしてその謎を、未だに観測されておらず、「科学者の妄想の産物」でしかない「ダークマター(暗黒物質)」が解決するかもしれない。現役の科学者が『ダークマターと恐竜絶滅』で語る驚きの仮説。
一般相対性理論と量子力学の矛盾をひも理論が解消する?
この記事では、第1章から第4章の事前知識の部分に関してはほとんど触れない。しかし、まったく触れずに説明するのも難しいので、まずは、「ひも理論」と呼ばれる仮説がどのような立ち位置にいるのかを理解しよう。
20世紀物理学の至宝と呼ばれているのが、「一般相対性理論」と「量子力学」だ。非常に大雑把に説明すると、「一般相対性理論」は「天体などのメチャクチャ大きなものに適用できる理論」であり、一方の「量子力学」は「原子などのメチャクチャ小さなものに適用できる理論」である。
あわせて読みたい
【敗北】「もつれ」から量子論の基礎を学ぶ。それまでの科学では説明不能な「異次元の現象」とは?:『…
アインシュタインは量子力学を生涯受け入れなかったのだが、アインシュタインが批判し続けたことによって明らかになったこともある。「もつれ」の重要性もその一つだ。『宇宙は「もつれ」でできている』から量子力学の基礎を成す現象を知る。
「一般相対性理論」と「量子力学」は、それぞれは非常に完成された理論だ。天体に一般相対性理論を適用して問題が起こることはないし、原子に量子力学を適用して問題が起こることもない。一般相対性理論はGPSなどに、量子力学は電子機器などに使われており、実用的な意味でも不可欠な理論と言える。
しかしこの2つの理論には、大きな問題があった。それは、「一般相対性理論と量子力学を同時に適用すると矛盾が生じる」というものだ。それぞれは完璧な理論なのに、この2つを同時に適用すると上手くいかないのである。
ちなみにこれは余談。アインシュタインが生み出した「相対性理論」には「特殊」と「一般」が存在する。そして、「特殊相対性理論」と「量子力学」については、ディラックという天才科学者が、同時に適用しても大丈夫な方程式を作り出し、科学界をザワつかせた。しかし、「一般相対性理論」と「量子力学」を融合することには、まだ誰も成功していないというわけだ。
ここで「ひも理論」と呼ばれる仮説が登場する。「理論」と名前がついているが、まだ実験・観測によってで正しいと検証されているものではない。本来的には「ひも仮説」とでも呼ぶべきだろうが、一般的には「ひも理論」と呼ばれている。
あわせて読みたい
【幻想】超ひも理論って何?一般相対性理論と量子力学を繋ぐかもしれないぶっ飛んだ仮説:『大栗先生の…
『大栗先生の超弦理論入門』は最先端科学である「超弦理論」を説明する1冊だが、この記事では著者の主張の1つである「空間は幻想かもしれない」という発想を主に取り上げる。「人類史上初の『適用する次元が限定される理論』」が描像する不可思議な世界とは?
さらに再び余談だが、この「ひも理論」は「弦理論」とも呼ばれている。これは、呼び方が違うだけで同じものだと思ってもらっていい。また、「超ひも理論」「超弦理論」という名称も存在するのだが、これについては、「ひも理論」の発展版が「超ひも理論」だと思ってもらえればいいだろう。ただし「超」は「前の理論を超えている」という意味ではなく、「超対称性」の「超」から取られている。
「ひも理論」は、一般相対性理論や量子力学とはまったく関係ない分野から発展したものだが、やがて、「一般相対性理論と量子力学を融合させられる唯一の理論かもしれない」と期待されるようになる。その辺りの流れは是非本書で読んでほしいが、「ひも理論」は、「一時期衰退しながらも華麗な復活を遂げている」「しかし、実験での検証が不可能と考えられており、科学ではないという批判もある」など、様々な議論を巻き起こす存在だ。
リサ・ランドールは素粒子物理学と呼ばれる分野の研究もしており、その中に「ひも理論」も含まれている。彼女が提唱した「ワープする余剰次元」も、「ひも理論」の考え方から生まれたものだ。そういうわけで本書では、事前知識として「一般相対性理論」「量子力学」「ひも理論」が説明されることになる。
あわせて読みたい
【天才】科学者とは思えないほど面白い逸話ばかりのファインマンは、一体どんな業績を残したのか?:『…
数々の面白エピソードで知られるファインマンの「科学者としての業績」を初めて網羅したと言われる一般書『ファインマンさんの流儀』をベースに、その独特の研究手法がもたらした様々な分野への間接的な貢献と、「ファインマン・ダイアグラム」の衝撃を理解する
「重力」の重要難問「階層性問題」とは?
それらの事前知識を学んでいく中で、「重力」に関する非常に重大な問題が解説される。それが「階層性問題」だ。そして、この「階層性問題」を解消するためのモデルとして「ワープする余剰次元」を提唱した、という流れになっていく。
そこで継ぎはこの「階層性問題」について触れていこう。
まず、宇宙に存在する4つの力について説明する。宇宙には「重力」「電磁気力」「弱い力」「強い力」という4つの力が存在する(というか、この4つしか存在しない)とされている。「弱い力」「強い力」というのは変な名前だと感じるだろうが、どちらも正式名称である。
あわせて読みたい
【到達】「ヒッグス粒子の発見」はなぜ大ニュースなのか?素粒子物理学の「標準模型」を易しく説明する…
「ヒッグス粒子の発見」はメディアでも大きく取り上げられたが、これが何故重要なのかを説明できる人はそう多くはないだろう。『強い力と弱い力 ヒッグス粒子が宇宙にかけた魔法を解く』をベースに、謎めいた「弱い力」を説明する「自発的対称性の破れ」を学ぶ
そして、現在の科学の「希望」として、「宇宙が始まった当初はこの4つの力が1つの力として存在しており、時間経過と共に徐々に分裂し、4つになったのだ」と考えられている。あくまでもこれは仮説であり、まだ科学者の妄想にすぎない。
この妄想を最初に提唱したのはアインシュタインであり、当時は「何を馬鹿なことを」といって非難された。しかし今では「科学における聖杯」、つまり「4つの力を統一することが科学の究極の目標」とさえ考えられている。
当初はアインシュタインの妄想にすぎなかったこの考え方は徐々に支持者を増やし、やがて「電弱理論」が生み出されるに至った。これは名前の通り「電磁気力」と「弱い力」が宇宙初期は同じ力だったことを証明した理論であり、この「電弱理論」が発表されたことで、「4つの力の統一も夢ではない」と受け取られるようになっていくのである。
あわせて読みたい
【始まり】宇宙ができる前が「無」なら何故「世界」が生まれた?「ビッグバンの前」は何が有った?:『…
「宇宙がビッグバンから生まれた」ことはよく知られているだろうが、では、「宇宙ができる前はどうなっていたのか」を知っているだろうか? 実は「宇宙は”無”から誕生した」と考えられているのだ。『宇宙が始まる前には何があったのか?』をベースに、ビッグバンが起こる前の「空間も時間も物理法則も存在しない無」について学ぶ
しかし、4つの力の統一には、大きな大きな難問が存在する。それが「階層性問題」である。
4つの力が元々は同じ力だった、とするには、それぞれの力の大きさが極端に違っていると困る。例えば「体長1mの生物」と「体長1億×1億mの生物」が、元々同じ生き物でした、と考えるのは結構無理があるだろう。さすがに、もう少し同じぐらいの体長じゃないと、かつて同じだったとはなかなか信じ難いし、説明も難しい。
しかし、「重力」と「弱い力」の関係がまさにこうなのだ。重力は「プランクスケール質量」、弱い力は「ウィークスケール質量」と呼ばれるものでその大きさが決まるのだが、「プランクスケール質量」と「ウィークスケール質量」はなんと、「10の16乗(1億×1億)倍」も違う。
科学者は、4つの力を統一するために、当然「重力と弱い力もかつて同じだった」と説明しなければならないが、そのためには、これほど大きさの違うものが同じ力だったと説明しなければならないのだ。
あわせて読みたい
【論争】サイモン・シンが宇宙を語る。古代ギリシャからビッグバンモデルの誕生までの歴史を網羅:『宇…
古代から現代に至るまで、「宇宙」は様々な捉えられ方をしてきた。そして、新たな発見がなされる度に、「宇宙」は常識から外れた不可思議な姿を垣間見せることになる。サイモン・シン『宇宙創成』をベースに、「ビッグバンモデル」に至るまでの「宇宙観」の変遷を知る
このように「重力」は、他の3つの力と比べて笑ってしまうぐらい弱い。この「重力があまりにも弱い」というのが「重力の階層性問題」と呼ばれているものである。
「ワープする余剰次元」の説明
「ブレーン」とは何か
それではここから「ワープする余剰次元」について説明していこう。しかし繰り返すが、この記事では事前知識に触れていないので、一般相対性理論・量子力学の知識がない人にはちんぷんかんぷんな単語が出てきたりもするだろう。その点はご容赦いただきたい。
「ワープする余剰次元」を要約すると、
あわせて読みたい
【バトル】量子力学の歴史はこの1冊で。先駆者プランクから批判者アインシュタインまですべて描く:『量…
20世紀に生まれた量子論は、時代を彩る天才科学者たちの侃々諤々の議論から生み出された。アインシュタインは生涯量子論に反対し続けたことで知られているが、しかし彼の批判によって新たな知見も生まれた。『量子革命』から、量子論誕生の歴史を知る
二枚の性質の異なるブレーンによって、5番目の時空(バルク)を挟み込んだ余剰次元が存在する
となる。
まず「ブレーン」とは何かだが、これは「ひも理論」から導き出されるものだ。イメージとしては「膜」である(「ブレーン」とは「膜」という意味)。私が常にイメージしているのは、最近はあまり見かけない「ウォーターベッド」である。もう少し一般的なものでいえば「風船」だろう。
さて、本書で説明される「ブレーン」は実際のところ、「4次元のブレーン」である。しかし我々は4次元を思い浮かべられないので、1つ次元を下げて「3次元のブレーン」を考えよう。この場合は「風船」のイメージでいい。風船には内部の空間があり、それが風船で区切られ、その外側にも別の空間があるという捉え方だ。以下、この「風船」のイメージを使って説明していくが、本当は「4次元のブレーン」なのだということは理解しておいてほしい。
「ブレーン」は、力と粒子をその内部に留めておく性質を持つ。そして一方で、「我々が生きているこの宇宙そのものは、ブレーンの内部にある」と考えることができる。我々人間も「粒子」でできているので、我々を含めたこのブレーンの内部にあるほとんどのものは、ブレーンの外側に出ることはできないということになる。
あわせて読みたい
【誤解】「意味のない科学研究」にはこんな価値がある。高校生向けの講演から”科学の本質”を知る:『す…
科学研究に対して、「それは何の役に立つんですか?」と問うことは根本的に間違っている。そのことを、「携帯電話」と「東急ハンズの棚」の例を使って著者は力説する。『すごい実験』は素粒子物理学を超易しく解説する本だが、科学への関心を抱かせてもくれる
要するにメチャクチャでかい風船の中に、我々が生きている宇宙(地球ではなくて宇宙)がすっぽり入っている、というイメージをしてもらえればとりあえずいい。
さて、この「ブレーン」を唯一すり抜けることができるものがある。それが「重力」である。先に書いておくと、これは「階層性問題を解消するための都合の良い設定」というわけではない。「ひも理論」において「ブレーン」の性質を調べると、「重力だけはブレーンの外に染み出すことができる」ということが分かった、ということだ。ここには、「閉じたひも」と「開いたひも」という2つの性質が関係しているのだが、この記事では省略する。
ここまでの話をまとめておく。力と粒子は「ブレーン」の内部から出ることができない。しかし「重力」だけは「ブレーン」をすり抜けることができる。そういう性質を持つ「ブレーン」という存在が、「ひも理論」から自然に導かれる、ということだ。
いかに「階層性問題」を解決するか
次に、この「ブレーン」が2つ向き合っているとする。ここでは、「風船」のような丸い形だと都合が悪いので、「風船」のイメージから離れてもらい、板状の「ブレーン」が2枚向かい合わせに置かれているような状況を想像してほしい。2個のドミノをちょっと離して置いている、というような感じだ。
あわせて読みたい
【限界】「科学とは何か?」を知るためのおすすめ本。科学が苦手な人こそ読んでほしい易しい1冊:『哲学…
「科学的に正しい」という言葉は、一体何を意味しているのだろう?科学者が「絶対に正しい」とか「100%間違っている」という言い方をしないのは何故だろう?飲茶『哲学的な何か、あと科学とか』から、「科学とはどんな営みなのか?」について考える
この状況において、2枚のブレーンの間に「5番目の次元」が存在していると理解できるだろうか? 先程から繰り返している通り、1つ1つのブレーンは「4次元」である。そして一方のブレーンからもう一方ブレーンへと向かう「5番目の次元」がある。上手くイメージできないかもしれないが、とにかくそういうものだとして、この「5番目の次元」は「バルク」と呼ばれている。
そして、一般相対性理論の効果を考えることで、この2つのブレーンの間の空間(バルク)は、トランペットの口のような形に時空が歪曲(ワープ)していることが分かっている。ブレーンそのものが帯びているエネルギーが時空を歪ませるために、バルクはトランペットの口のような形になってしまう、ということだ。
これが、リサ・ランドールが考えた「ワープする余剰次元」のモデルだ。そしてこの構造を考えることで、重力がなぜこんなに弱いのかという「階層性問題」を解消することができる。その理屈はこうだ。
あわせて読みたい
【解説】テネットの回転ドアの正体を分かりやすく考察。「時間逆行」ではなく「物質・反物質反転」装置…
クリストファー・ノーラン監督の映画『TENET/テネット』は、「陽電子」「反物質」など量子力学の知見が満載です。この記事では、映画の内容そのものではなく、時間反転装置として登場する「回転ドア」をメインにしつつ、時間逆行の仕組みなど映画全体の設定について科学的にわかりやすく解説していきます
2つのブレーンが向き合っていると書いたが、両者の性質は異なる。一方は我々が生きているブレーン(これを「ウィークブレーン」と呼ぶ)だが、もう一方は「重力ブレーン」である。そして、「ウィークブレーン」で感じる「重力」は、実はこの「重力ブレーン」で生み出されていると考えるのだ。
その両者を繋ぐ空間は、トランペットの口のように歪曲している。これはつまり、「重力ブレーンでどれだけ大きな重力が作られても、その歪曲している空間を通ることで指数関数的に減少していく」ということだ。
だからこそ、「ウィークブレーン」で感じる「重力」は弱いのだ、という説明である。
もしこれが本当であれば、4つの力の統一の障害となっていた「階層性問題」は問題ではなくなる。確かに「ウィークブレーン」で感じる「重力」はメチャクチャ弱い。しかし、「重力ブレーン」で元々生み出される「重力」は、他の3つの力と比べて遜色ないぐらい大きいのだ。リサ・ランドールはこのように考え、「階層性問題」を解決しようとしているのである。
あわせて読みたい
【驚異】ガイア理論の提唱者が未来の地球を語る。100歳の主張とは思えない超絶刺激に満ちた内容:『ノヴ…
「地球は一種の生命体だ」という主張はかなり胡散臭い。しかし、そんな「ガイア理論」を提唱する著者は、数々の賞や学位を授与される、非常に良く知られた科学者だ。『ノヴァセン <超知能>が地球を更新する』から、AIと人類の共存に関する斬新な知見を知る
この仮説は検証できるのか?
ここで問題となるのが、「この仮説は検証可能なのか?」ということだ。そしてこれは、「ひも理論」そのものが常に受け続けている問いでもある。
「ワープする余剰次元」を検証するのは非常に難しいだろう。仮に世界がリサ・ランドールの言うような形になっていたとしても、我々は普通には「重力ブレーン」の存在を感知できない。
なぜなら、先程書いたように、「ブレーン」からは重力以外出られないからだ。
あわせて読みたい
【衝撃】ABC予想の証明のために生まれたIUT理論を、提唱者・望月新一の盟友が分かりやすく語る:『宇宙…
8年のチェック期間を経て雑誌に掲載された「IUT理論(宇宙際タイヒミュラー理論)」は、数学の最重要未解決問題である「ABC予想」を証明するものとして大いに話題になった。『宇宙と宇宙をつなぐ数学』『abc予想入門』をベースに、「IUT理論」「ABC予想」について学ぶ
私たちが何かを「見る」「観測する」方法は様々に存在する。自分の目で見たり、顕微鏡や望遠鏡などを使ってもいい。赤外線カメラや電波望遠鏡など、普通の可視光線以外のもので捉える方法もある。
しかしいずれにしても「見る」「観測する」ためには、「可視光線や電磁波などが物体に当たり、その反射光を捉える」必要がある。
しかし、「ブレーン」からは重力以外出ることができない。可視光線も電磁波も、ブレーンの外に出ることはできないのだから、「重力ブレーンに可視光線や電磁波を当てて、その反射光を捉える」みたいなやり方では観測できないことになる。
しかし、可能性がゼロなわけではない。「重力で見る方法」が残されている。
あわせて読みたい
【平易】一般相対性理論を簡単に知りたい方へ。ブラックホール・膨張宇宙・重力波と盛りだくさんの1冊:…
現役の研究者が執筆した『ブラックホール・膨張宇宙・重力波』は、アインシュタインが導き出した一般相対性理論が関わる3つのテーマについて、初心者にも分かりやすく伝える内容になっている。歴史的背景も含めて科学的知見を知りたい方にオススメの1冊
アインシュタインが予言し、100年近く経って初めて観測された「重力波」は、可視光線や電磁波と同じような働きが可能だ。可視光線や電磁波が届きにくい宇宙の領域というのは存在し、「重力波望遠鏡」によってこれまで見られなかったものを見る計画も進んでいる。
重力だけが「ブレーン」を出ることができるなら、「重力波を当てて、その反射光を捉える」というやり方で「重力ブレーン」を捉えられる可能性はあるかもしれない。
しかしそうだとしても相当難しいだろう。
このように「ひも理論」は、非常に斬新で魅力的な仮説を多数提唱するのだが、「実験での検証ができそうにない」という大きな問題を抱えている。しかし科学の歴史は、不可能を覆す歴史でもある。いずれ人類が、「ひも理論」の検証を行う実験に着手できることを期待している。
あわせて読みたい
【挑戦】相対性理論の光速度不変の原理を無視した主張『光速より速い光』は、青木薫訳だから安心だぞ
『光速より速い光』というタイトルを見て「トンデモ本」だと感じた方、安心してほしい。「光速変動理論(VSL理論)」が正しいかどうかはともかくとして、本書は実に真っ当な作品だ。「ビッグバン理論」の欠陥を「インフレーション理論」以外の理屈で補う挑戦的な仮説とは?
著:リサ・ランドール, 写真:ムコウヤマ シンジ, 写真:シオバラ ミチオ, 翻訳:向山 信治, 翻訳:塩原 通緒
¥2,074 (2022/02/03 22:59時点 | Amazon調べ)
ポチップ
あわせて読みたい
【全作品読了済】私が読んできたノンフィクション・教養書を色んな切り口で分類しました
この記事では、「今まで私が読んできたノンフィクションを様々に分類した記事」を一覧にしてまとめました。私が面白いと感じた作品だけをリストアップしていますので、是非本選びの参考にして下さい。
最後に
一般向けの科学書を結構読むが、現役の科学者自らが執筆することはそう多くないと思う(多くは、サイエンスライターと呼ばれる人の手によるものだ)。しかも、研究者が書いた本となると、専門用語だらけで難しいそうだとイメージするかもしれないが、まったくそんなことはない。
一般相対性理論や量子力学そのものが非常に難解なので本書の記述も難しく感じるだろうが、リサ・ランドールの筆致は非常に易しいと感じる。記述のレベルを可能な限り落とさないまま、説明を可能な限り易しくしている一冊だと言えるだろう。
あわせて読みたい
【限界】「科学とは何か?」を知るためのおすすめ本。科学が苦手な人こそ読んでほしい易しい1冊:『哲学…
「科学的に正しい」という言葉は、一体何を意味しているのだろう?科学者が「絶対に正しい」とか「100%間違っている」という言い方をしないのは何故だろう?飲茶『哲学的な何か、あと科学とか』から、「科学とはどんな営みなのか?」について考える
600ページを超える大著であり、雑学的な知識を得るためではなく、現代科学についてちょっと深入りしてみたいと感じる人がその一歩を踏み出す一冊として、非常に適切だと私は感じる。
あわせて読みたい
Kindle本出版しました!『天才・アインシュタインの生涯・功績をベースに、簡単過ぎない面白科学雑学を…
Kindleで本を出版しました。タイトルは、『天才・アインシュタインの生涯・功績をベースに、簡単過ぎない面白科学雑学を分かりやすく書いた本:相対性理論も宇宙論も量子論も』です。科学や科学者に関する、文系の人でも読んでもらえる作品に仕上げました。そんな自著について紹介をしています。
次にオススメの記事
あわせて読みたい
【奇妙】大栗博司『重力とはなにか』は、相対性理論や量子力学の説明も秀逸だが、超弦理論の話が一番面白い
『重力とはなにか』(大栗博司)は、科学に馴染みの薄い人でもチャレンジできる易しい入門書だ。相対性理論や量子力学、あるいは超弦理論など、非常に難解な分野を基本的なところから平易に説明してくれるので、「科学に興味はあるけど難しいのはちょっと……」という方にこそ読んでほしい1冊
あわせて読みたい
【あらすじ】原爆を作った人の後悔・葛藤を描く映画『オッペンハイマー』のための予習と評価(クリスト…
クリストファー・ノーラン監督作品『オッペンハイマー』は、原爆開発を主導した人物の葛藤・苦悩を複雑に描き出す作品だ。人間が持つ「多面性」を様々な方向から捉えようとする作品であり、受け取り方は人それぞれ異なるだろう。鑑賞前に知っておいた方がいい知識についてまとめたので、参考にしてほしい
あわせて読みたい
【挑戦】相対性理論の光速度不変の原理を無視した主張『光速より速い光』は、青木薫訳だから安心だぞ
『光速より速い光』というタイトルを見て「トンデモ本」だと感じた方、安心してほしい。「光速変動理論(VSL理論)」が正しいかどうかはともかくとして、本書は実に真っ当な作品だ。「ビッグバン理論」の欠陥を「インフレーション理論」以外の理屈で補う挑戦的な仮説とは?
あわせて読みたい
【圧巻】150年前に気球で科学と天気予報の歴史を変えた挑戦者を描く映画『イントゥ・ザ・スカイ』
「天気予報」が「占い」と同等に扱われていた1860年代に、気球を使って気象の歴史を切り開いた者たちがいた。映画『イントゥ・ザ・スカイ』は、酸素ボンベ無しで高度1万1000m以上まで辿り着いた科学者と気球操縦士の物語であり、「常識を乗り越える冒険」の素晴らしさを教えてくれる
あわせて読みたい
【特異】「カメラの存在」というドキュメンタリーの大前提を覆す映画『GUNDA/グンダ』の斬新さ
映画『GUNDA/グンダ』は、「カメラの存在」「撮影者の意図」を介在させずにドキュメンタリーとして成立させた、非常に異端的な作品だと私は感じた。ドキュメンタリーの「デュシャンの『泉』」と呼んでもいいのではないか。「家畜」を被写体に据えたという点も非常に絶妙
あわせて読みたい
【おすすめ】「天才」を描くのは難しい。そんな無謀な挑戦を成し遂げた天才・野崎まどの『know』はヤバい
「物語で『天才』を描くこと」は非常に難しい。「理解できない」と「理解できる」を絶妙なバランスで成り立たせる必要があるからだ。そんな難題を高いレベルでクリアしている野崎まど『know』は、異次元の小説である。世界を一変させた天才を描き、「天才が見ている世界」を垣間見せてくれる
あわせて読みたい
【奇人】天才数学者で、自宅を持たずに世界中を放浪した変人エルデシュは、迷惑な存在でも愛され続けた…
数学史上ガウスに次いで生涯発表論文数が多い天才エルデシュをご存知だろうか?数学者としてずば抜けた才能を発揮したが、それ以上に「奇人変人」としても知られる人物だ。『放浪の天才数学者エルデシュ』で、世界中の数学者の家を泊まり歩いた異端数学者の生涯を描き出す
あわせて読みたい
【天才】『ご冗談でしょう、ファインマンさん』は、科学者のイメージが変わる逸話満載の非・科学エッセイ
「天才科学者」と言えばアインシュタインやニュートン、ホーキングが思い浮かぶだろうが、「科学者らしくないエピソード満載の天才科学者」という意味ではファインマンがずば抜けている。世界的大ベストセラー『ご冗談でしょう、ファインマンさん』は、「科学」をほぼ扱わないエッセイです
あわせて読みたい
【実話】映画『イミテーションゲーム』が描くエニグマ解読のドラマと悲劇、天才チューリングの不遇の死
映画『イミテーションゲーム』が描く衝撃の実話。「解読不可能」とまで言われた最強の暗号機エニグマを打ち破ったのはなんと、コンピューターの基本原理を生み出した天才数学者アラン・チューリングだった。暗号解読を実現させた驚きのプロセスと、1400万人以上を救ったとされながら偏見により自殺した不遇の人生を知る
あわせて読みたい
【最新】「コロンブス到達以前のアメリカ大陸」をリアルに描く歴史書。我々も米国人も大いに誤解してい…
サイエンスライターである著者は、「コロンブス到着以前のアメリカはどんな世界だったか?」という問いに触れ、その答えが書かれた本がいつまで経っても出版されないので自分で執筆した。『1491 先コロンブス期アメリカ大陸をめぐる新発見』には、アメリカ人も知らない歴史が満載だ
あわせて読みたい
【歴史】ベイズ推定は現代社会を豊かにするのに必須だが、実は誕生から200年間嫌われ続けた:『異端の統…
現在では、人工知能を始め、我々の生活を便利にする様々なものに使われている「ベイズ推定」だが、その基本となるアイデアが生まれてから200年近く、科学の世界では毛嫌いされてきた。『異端の統計学ベイズ』は、そんな「ベイズ推定」の歴史を紐解く大興奮の1冊だ
あわせて読みたい
【知的】文系にオススメの、科学・数学・哲学の入門書。高橋昌一郎の「限界シリーズ」は超絶面白い:『…
例えば「科学」だけに限ってみても、「なんでもできる」わけでは決してない。「科学」に限らず、私たちが対峙する様々な事柄には「これ以上は不可能・無理」という「限界」が必ず存在する。高橋昌一郎の「限界シリーズ」から、我々が認識しておくべき「限界」を易しく学ぶ
あわせて読みたい
【貢献】飛行機を「安全な乗り物」に決定づけたMr.トルネードこと天才気象学者・藤田哲也の生涯:『Mr….
つい数十年前まで、飛行機は「死の乗り物」だったが、天才気象学者・藤田哲也のお陰で世界の空は安全になった。今では、自動車よりも飛行機の方が死亡事故の少ない乗り物なのだ。『Mr.トルネード 藤田哲也 世界の空を救った男』から、その激動の研究人生を知る
あわせて読みたい
【驚異】ガイア理論の提唱者が未来の地球を語る。100歳の主張とは思えない超絶刺激に満ちた内容:『ノヴ…
「地球は一種の生命体だ」という主張はかなり胡散臭い。しかし、そんな「ガイア理論」を提唱する著者は、数々の賞や学位を授与される、非常に良く知られた科学者だ。『ノヴァセン <超知能>が地球を更新する』から、AIと人類の共存に関する斬新な知見を知る
あわせて読みたい
【興奮】飲茶氏が西洋哲学を語る。難解な思想が「グラップラー刃牙成分」の追加で驚異的な面白さに:『…
名前は聞いたことはあるがカントやニーチェがどんな主張をしたのかは分からないという方は多いだろう。私も無知なまったくの初心者だが、そんな人でも超絶分かりやすく超絶面白く西洋哲学を”分かった気になれる”飲茶『史上最強の哲学入門』は、入門書として最強
あわせて読みたい
【あらすじ】天才とは「分かりやすい才能」ではない。前進するのに躊躇する暗闇で直進できる勇気のこと…
ピアノのコンクールを舞台に描く『蜜蜂と遠雷』は、「天才とは何か?」と問いかける。既存の「枠組み」をいとも簡単に越えていく者こそが「天才」だと私は思うが、「枠組み」を安易に設定することの是非についても刃を突きつける作品だ。小説と映画の感想を一緒に書く
あわせて読みたい
【幻想】超ひも理論って何?一般相対性理論と量子力学を繋ぐかもしれないぶっ飛んだ仮説:『大栗先生の…
『大栗先生の超弦理論入門』は最先端科学である「超弦理論」を説明する1冊だが、この記事では著者の主張の1つである「空間は幻想かもしれない」という発想を主に取り上げる。「人類史上初の『適用する次元が限定される理論』」が描像する不可思議な世界とは?
あわせて読みたい
【限界】「科学とは何か?」を知るためのおすすめ本。科学が苦手な人こそ読んでほしい易しい1冊:『哲学…
「科学的に正しい」という言葉は、一体何を意味しているのだろう?科学者が「絶対に正しい」とか「100%間違っている」という言い方をしないのは何故だろう?飲茶『哲学的な何か、あと科学とか』から、「科学とはどんな営みなのか?」について考える
あわせて読みたい
【貢献】有名な科学者は、どんな派手な失敗をしてきたか?失敗が失敗でなかったアインシュタインも登場…
どれほど偉大な科学者であっても失敗を避けることはできないが、「単なる失敗」で終わることはない。誤った考え方や主張が、プラスの効果をもたらすこともあるのだ。『偉大なる失敗』から、天才科学者の「失敗」と、その意外な「貢献」を知る
あわせて読みたい
【誤解】「意味のない科学研究」にはこんな価値がある。高校生向けの講演から”科学の本質”を知る:『す…
科学研究に対して、「それは何の役に立つんですか?」と問うことは根本的に間違っている。そのことを、「携帯電話」と「東急ハンズの棚」の例を使って著者は力説する。『すごい実験』は素粒子物理学を超易しく解説する本だが、科学への関心を抱かせてもくれる
あわせて読みたい
【バトル】量子力学の歴史はこの1冊で。先駆者プランクから批判者アインシュタインまですべて描く:『量…
20世紀に生まれた量子論は、時代を彩る天才科学者たちの侃々諤々の議論から生み出された。アインシュタインは生涯量子論に反対し続けたことで知られているが、しかし彼の批判によって新たな知見も生まれた。『量子革命』から、量子論誕生の歴史を知る
あわせて読みたい
【到達】「ヒッグス粒子の発見」はなぜ大ニュースなのか?素粒子物理学の「標準模型」を易しく説明する…
「ヒッグス粒子の発見」はメディアでも大きく取り上げられたが、これが何故重要なのかを説明できる人はそう多くはないだろう。『強い力と弱い力 ヒッグス粒子が宇宙にかけた魔法を解く』をベースに、謎めいた「弱い力」を説明する「自発的対称性の破れ」を学ぶ
あわせて読みたい
【論争】サイモン・シンが宇宙を語る。古代ギリシャからビッグバンモデルの誕生までの歴史を網羅:『宇…
古代から現代に至るまで、「宇宙」は様々な捉えられ方をしてきた。そして、新たな発見がなされる度に、「宇宙」は常識から外れた不可思議な姿を垣間見せることになる。サイモン・シン『宇宙創成』をベースに、「ビッグバンモデル」に至るまでの「宇宙観」の変遷を知る
あわせて読みたい
【変人】結城浩「数学ガール」から、1億円も名誉ある賞も断った天才が証明したポアンカレ予想を学ぶ
1億円の賞金が懸けられた「ポアンカレ予想」は、ペレルマンという天才数学者が解き明かしたが、1億円もフィールズ賞も断った。そんな逸話のある「ポアンカレ予想」とは一体どんな主張であり、どのように証明されたのかを結城浩『数学ガール』から学ぶ
あわせて読みたい
【天才】科学者とは思えないほど面白い逸話ばかりのファインマンは、一体どんな業績を残したのか?:『…
数々の面白エピソードで知られるファインマンの「科学者としての業績」を初めて網羅したと言われる一般書『ファインマンさんの流儀』をベースに、その独特の研究手法がもたらした様々な分野への間接的な貢献と、「ファインマン・ダイアグラム」の衝撃を理解する
あわせて読みたい
【謎】恐竜を絶滅させた隕石はどこから来た?暗黒物質が絡む、リサ・ランドールの驚愕の仮説:『ダーク…
「生物の絶滅」には、以前から知られていたある謎があった。そしてその謎を、未だに観測されておらず、「科学者の妄想の産物」でしかない「ダークマター(暗黒物質)」が解決するかもしれない。現役の科学者が『ダークマターと恐竜絶滅』で語る驚きの仮説。
この記事を読んでくれた方にオススメのタグページ
ルシルナ
宇宙・ビッグバン・ブラック ホール・相対性理論【本・映画の感想】 | ルシルナ
科学全般に関心を持っていますが、その中でも宇宙に関する本はたくさん読んできました。ビッグバンがいかに起こったか、ブラックホールはどうやって直接観測されたか、宇宙…
タグ一覧ページへのリンクも貼っておきます
ルシルナ
記事検索(カテゴリー・タグ一覧) | ルシルナ
ルシルナは、4000冊以上の本と500本以上の映画をベースに、生き方や教養について書いていきます。ルシルナでは36個のタグを用意しており、興味・関心から記事を選びやすく…
コメント